Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

BanditCAT and AutoIRT: Machine Learning Approaches to Computerized Adaptive Testing and Item Calibration (2410.21033v1)

Published 28 Oct 2024 in stat.ML, cs.LG, and stat.AP

Abstract: In this paper, we present a complete framework for quickly calibrating and administering a robust large-scale computerized adaptive test (CAT) with a small number of responses. Calibration - learning item parameters in a test - is done using AutoIRT, a new method that uses automated machine learning (AutoML) in combination with item response theory (IRT), originally proposed in [Sharpnack et al., 2024]. AutoIRT trains a non-parametric AutoML grading model using item features, followed by an item-specific parametric model, which results in an explanatory IRT model. In our work, we use tabular AutoML tools (AutoGluon.tabular, [Erickson et al., 2020]) along with BERT embeddings and linguistically motivated NLP features. In this framework, we use Bayesian updating to obtain test taker ability posterior distributions for administration and scoring. For administration of our adaptive test, we propose the BanditCAT framework, a methodology motivated by casting the problem in the contextual bandit framework and utilizing item response theory (IRT). The key insight lies in defining the bandit reward as the Fisher information for the selected item, given the latent test taker ability from IRT assumptions. We use Thompson sampling to balance between exploring items with different psychometric characteristics and selecting highly discriminative items that give more precise information about ability. To control item exposure, we inject noise through an additional randomization step before computing the Fisher information. This framework was used to initially launch two new item types on the DET practice test using limited training data. We outline some reliability and exposure metrics for the 5 practice test experiments that utilized this framework.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.