Papers
Topics
Authors
Recent
2000 character limit reached

Push-Forward Signed Distance Functions enable interpretable and robust continuous shape quantification (2410.21004v1)

Published 28 Oct 2024 in cs.CV, cs.CG, and q-bio.QM

Abstract: We introduce the Push-Forward Signed Distance Morphometric (PF-SDM), a novel method for shape quantification in biomedical imaging that is continuous, interpretable, and invariant to shape-preserving transformations. PF-SDM effectively captures the geometric properties of shapes, including their topological skeletons and radial symmetries. This results in a robust and interpretable shape descriptor that generalizes to capture temporal shape dynamics. Importantly, PF-SDM avoids certain issues of previous geometric morphometrics, like Elliptical Fourier Analysis and Generalized Procrustes Analysis, such as coefficient correlations and landmark choices. We present the PF-SDM theory, provide a practically computable algorithm, and benchmark it on synthetic data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.