Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
72 tokens/sec
GPT-4o
61 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Small Language Models (2410.20011v1)

Published 25 Oct 2024 in cs.CL
A Survey of Small Language Models

Abstract: Small LLMs (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient LLMs.

A Survey of Small LLMs

This essay provides an overview of the paper "A Survey of Small LLMs," discussing the increasing relevance of Small LLMs (SLMs) due to their efficiency and capability to perform language tasks with minimal computational resources. As LLMs such as GPT-3 and LLAMA demand substantial computational resources, there has been a shift in research focus towards optimizing SLMs for on-device and resource-constrained environments.

Key Contributions

The paper presents a comprehensive survey focusing on three main aspects of SLM development: architectures, training techniques, and model compression methods. Moreover, it proposes a novel taxonomy for categorizing optimization methods for SLMs, providing a structured approach to understanding advances in the field.

Model Architectures

The research discusses various architectural strategies for developing SLMs, emphasizing lightweight designs, efficient self-attention mechanisms, and the use of neural architecture search techniques. In particular, techniques like low-rank factorization and neural architecture pruning demonstrate significant advances in maintaining performance while reducing computational overhead. The paper also highlights the role of multi-modal models in leveraging these lightweight architectures, exemplified by recent works like Gemma and Chameleon.

Training Techniques

Training efficiency is crucial for SLMs, and the paper reviews efficient pre-training and fine-tuning strategies. Mixed precision training emerges as a vital method for handling resource constraints, with recent advancements in hardware support for FP8 precision significantly enhancing computational efficiency. The survey also emphasizes Parameter-Efficient Fine-Tuning (PEFT) and data augmentation techniques as effective methods to adapt SLMs to specific tasks while maintaining efficiency.

Model Compression

Model compression is a key strategy in deriving SLMs from LLMs. The survey categorizes compression methods into pruning, quantization, and knowledge distillation. Weight pruning, both structured and unstructured, is highlighted for its potential to reduce both storage and computational requirements without substantial performance loss. The paper also details quantization techniques like SmoothQuant, which address challenges in activation quantization, and knowledge distillation strategies that effectively transfer capabilities from larger models.

Evaluation and Applications

The paper outlines the datasets and metrics used to evaluate SLMs, structured around constraints such as inference runtime, memory, and energy efficiency. Additionally, it identifies real-world applications of SLMs, from real-time interaction to edge computing, illustrating their practical relevance in various contexts.

Open Problems and Future Directions

The paper underscores existing challenges, such as addressing hallucinations and biases in LLMs, and enhancing energy efficiency during inference. Privacy concerns are also highlighted, considering the sensitive nature of data handled by SLMs. Addressing these issues presents significant opportunities for future research, particularly in improving deployment on consumer devices while maintaining robust performance.

Conclusion

Overall, the paper serves as a valuable resource for researchers, offering a structured overview of the current landscape of SLMs and identifying areas for future exploration. The methodologies discussed support the broader goal of achieving efficient, scalable LLMs applicable across diverse technological environments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (28)
  1. Chien Van Nguyen (6 papers)
  2. Xuan Shen (29 papers)
  3. Ryan Aponte (5 papers)
  4. Yu Xia (65 papers)
  5. Samyadeep Basu (28 papers)
  6. Zhengmian Hu (23 papers)
  7. Jian Chen (257 papers)
  8. Mihir Parmar (25 papers)
  9. Sasidhar Kunapuli (4 papers)
  10. Joe Barrow (12 papers)
  11. Junda Wu (35 papers)
  12. Ashish Singh (15 papers)
  13. Yu Wang (939 papers)
  14. Jiuxiang Gu (73 papers)
  15. Franck Dernoncourt (161 papers)
  16. Nesreen K. Ahmed (76 papers)
  17. Nedim Lipka (49 papers)
  18. Ruiyi Zhang (98 papers)
  19. Xiang Chen (343 papers)
  20. Tong Yu (119 papers)
Youtube Logo Streamline Icon: https://streamlinehq.com