Do Discrete Self-Supervised Representations of Speech Capture Tone Distinctions? (2410.19935v1)
Abstract: Discrete representations of speech, obtained from Self-Supervised Learning (SSL) foundation models, are widely used, especially where there are limited data for the downstream task, such as for a low-resource language. Typically, discretization of speech into a sequence of symbols is achieved by unsupervised clustering of the latents from an SSL model. Our study evaluates whether discrete symbols - found using k-means - adequately capture tone in two example languages, Mandarin and Yoruba. We compare latent vectors with discrete symbols, obtained from HuBERT base, MandarinHuBERT, or XLS-R, for vowel and tone classification. We find that using discrete symbols leads to a substantial loss of tone information, even for language-specialised SSL models. We suggest that discretization needs to be task-aware, particularly for tone-dependent downstream tasks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.