Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MMM: Multi-Layer Multi-Residual Multi-Stream Discrete Speech Representation from Self-supervised Learning Model (2406.09869v1)

Published 14 Jun 2024 in cs.SD and eess.AS

Abstract: Speech discrete representation has proven effective in various downstream applications due to its superior compression rate of the waveform, fast convergence during training, and compatibility with other modalities. Discrete units extracted from self-supervised learning (SSL) models have emerged as a prominent approach for obtaining speech discrete representation. However, while discrete units have shown effectiveness compared to spectral features, they still lag behind continuous SSL representations. In this work, we propose MMM, a multi-layer multi-residual multi-stream discrete units extraction method from SSL. Specifically, we introduce iterative residual vector quantization with K-means for different layers in an SSL model to extract multi-stream speech discrete representation. Through extensive experiments in speech recognition, speech resynthesis, and text-to-speech, we demonstrate the proposed MMM can surpass or on-par with neural codec's performance under various conditions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com