Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Neuromorphic information processing using ultrafast heat dynamics and quench switching of an antiferromagnet (2410.16909v1)

Published 22 Oct 2024 in physics.app-ph and cond-mat.mtrl-sci

Abstract: Solving complex tasks in a modern information-driven society requires novel materials and concepts for energy-efficient hardware. Antiferromagnets offer a promising platform for seeking such approaches due to their exceptional features: low power consumption and possible high integration density are desirable for information storage and processing or applications in unconventional computing. Among antiferromagnets, CuMnAs stands out for atomic-level scalable magnetic textures, analogue multilevel storage capability, and the magnetic state's control by a single electrical or femtosecond laser pulse. Using a pair of excitation laser pulses, this work examines synaptic and neuronal functionalities of CuMnAs for information processing, readily incorporating two principles of distinct characteristic timescales. Laser-induced transient heat dynamics at sub-nanosecond times represents the short-term memory and causes resistance switching due to quenching into a magnetically fragmented state. This quench switching, detectable electrically from ultrashort times to hours after writing, reminisces the long-term memory. The versatility of the principles' combination is demonstrated by operations commonly used in neural networks. Temporal latency coding, fundamental to spiking neural networks, is utilized to encode data from a grayscale image into sub-nanosecond pulse delays. Applying input laser pulses with distinct amplitudes then allows for pulse-pattern recognition. The results open pathways for designing novel computing architectures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.