Papers
Topics
Authors
Recent
2000 character limit reached

A quantitative Robbins-Siegmund theorem (2410.15986v1)

Published 21 Oct 2024 in math.OC, cs.LG, math.LO, and math.PR

Abstract: The Robbins-Siegmund theorem is one of the most important results in stochastic optimization, where it is widely used to prove the convergence of stochastic algorithms. We provide a quantitative version of the theorem, establishing a bound on how far one needs to look in order to locate a region of metastability in the sense of Tao. Our proof involves a metastable analogue of Doob's theorem for $L_1$-supermartingales along with a series of technical lemmas that make precise how quantitative information propagates through sums and products of stochastic processes. In this way, our paper establishes a general methodology for finding metastable bounds for stochastic processes that can be reduced to supermartingales, and therefore for obtaining quantitative convergence information across a broad class of stochastic algorithms whose convergence proof relies on some variation of the Robbins-Siegmund theorem. We conclude by discussing how our general quantitative result might be used in practice.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.