A quantitative Robbins-Siegmund theorem (2410.15986v1)
Abstract: The Robbins-Siegmund theorem is one of the most important results in stochastic optimization, where it is widely used to prove the convergence of stochastic algorithms. We provide a quantitative version of the theorem, establishing a bound on how far one needs to look in order to locate a region of metastability in the sense of Tao. Our proof involves a metastable analogue of Doob's theorem for $L_1$-supermartingales along with a series of technical lemmas that make precise how quantitative information propagates through sums and products of stochastic processes. In this way, our paper establishes a general methodology for finding metastable bounds for stochastic processes that can be reduced to supermartingales, and therefore for obtaining quantitative convergence information across a broad class of stochastic algorithms whose convergence proof relies on some variation of the Robbins-Siegmund theorem. We conclude by discussing how our general quantitative result might be used in practice.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.