Papers
Topics
Authors
Recent
2000 character limit reached

Simulation-based inference of single-molecule experiments (2410.15896v1)

Published 21 Oct 2024 in physics.chem-ph and q-bio.BM

Abstract: Single-molecule experiments are a unique tool to characterize the structural dynamics of biomolecules. However, reconstructing molecular details from noisy single-molecule data is challenging. Simulation-based inference (SBI) integrates statistical inference, physics-based simulators, and machine learning and is emerging as a powerful framework for analysing complex experimental data. Recent advances in deep learning have accelerated the development of new SBI methods, enabling the application of Bayesian inference to an ever-increasing number of scientific problems. Here, we review the nascent application of SBI to the analysis of single-molecule experiments. We introduce parametric Bayesian inference and discuss its limitations. We then overview emerging deep-learning-based SBI methods to perform Bayesian inference for complex models encoded in computer simulators. We illustrate the first applications of SBI to single-molecule force-spectroscopy and cryo-electron microscopy experiments. SBI allows us to leverage powerful computer algorithms modeling complex biomolecular phenomena to connect scientific models and experiments in a principled way.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.