Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HPVM-HDC: A Heterogeneous Programming System for Accelerating Hyperdimensional Computing (2410.15179v3)

Published 19 Oct 2024 in cs.PL

Abstract: Hyperdimensional Computing (HDC), a technique inspired by cognitive models of computation, has been proposed as an efficient and robust alternative basis for machine learning. HDC programs are often manually written in low-level and target specific languages targeting CPUs, GPUs, and FPGAs -- these codes cannot be easily retargeted onto HDC-specific accelerators. No previous programming system enables productive development of HDC programs and generates efficient code for several hardware targets. We propose a heterogeneous programming system for HDC: a novel programming language, HDC++, for writing applications using a unified programming model, including HDC-specific primitives to improve programmability, and a heterogeneous compiler, HPVM-HDC, that provides an intermediate representation for compiling HDC programs to many hardware targets. We implement two tuning optimizations, automatic binarization and reduction perforation, that exploit the error resilient nature of HDC. Our evaluation shows that HPVM-HDC generates performance-competitive code for CPUs and GPUs, achieving a geomean speed-up of 1.17x over optimized baseline CUDA implementations with a geomean reduction in total lines of code of 1.6x across CPUs and GPUs. Additionally, HPVM-HDC targets an HDC Digital ASIC and an HDC ReRAM accelerator simulator, enabling the first execution of HDC applications on these devices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube