Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 40 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Mirror Descent Perspective of Smoothed Sign Descent (2410.14158v1)

Published 18 Oct 2024 in cs.LG and math.OC

Abstract: Recent work by Woodworth et al. (2020) shows that the optimization dynamics of gradient descent for overparameterized problems can be viewed as low-dimensional dual dynamics induced by a mirror map, explaining the implicit regularization phenomenon from the mirror descent perspective. However, the methodology does not apply to algorithms where update directions deviate from true gradients, such as ADAM. We use the mirror descent framework to study the dynamics of smoothed sign descent with a stability constant $\varepsilon$ for regression problems. We propose a mirror map that establishes equivalence to dual dynamics under some assumptions. By studying dual dynamics, we characterize the convergent solution as an approximate KKT point of minimizing a Bregman divergence style function, and show the benefit of tuning the stability constant $\varepsilon$ to reduce the KKT error.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: