Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalized local polynomial reproductions

Published 16 Oct 2024 in math.CA, cs.NA, and math.NA | (2410.12973v1)

Abstract: We present a general framework, treating Lipschitz domains in Riemannian manifolds, that provides conditions guaranteeing the existence of norming sets and generalized local polynomial reproduction - a powerful tool used in the analysis of various mesh-free methods and a mesh-free method in its own right. As a key application, we prove the existence of smooth local polynomial reproductions on compact subsets of algebraic manifolds in $\mathbb{R}n$ with Lipschitz boundary. These results are then applied to derive new findings on the existence, stability, regularity, locality, and approximation properties of shape functions for a coordinate-free moving least squares approximation method on algebraic manifolds, which operates directly on point clouds without requiring tangent plane approximations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.