Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

In-Context Learning Enables Robot Action Prediction in LLMs (2410.12782v2)

Published 16 Oct 2024 in cs.RO and cs.CL

Abstract: Recently, LLMs have achieved remarkable success using in-context learning (ICL) in the language domain. However, leveraging the ICL capabilities within LLMs to directly predict robot actions remains largely unexplored. In this paper, we introduce RoboPrompt, a framework that enables off-the-shelf text-only LLMs to directly predict robot actions through ICL without training. Our approach first heuristically identifies keyframes that capture important moments from an episode. Next, we extract end-effector actions from these keyframes as well as the estimated initial object poses, and both are converted into textual descriptions. Finally, we construct a structured template to form ICL demonstrations from these textual descriptions and a task instruction. This enables an LLM to directly predict robot actions at test time. Through extensive experiments and analysis, RoboPrompt shows stronger performance over zero-shot and ICL baselines in simulated and real-world settings. Our project page is available at https://davidyyd.github.io/roboprompt.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. OpenAI, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2024.
  2. Anthropic, “Claude 3.5 model card addendum,” Claude 3.5 Sonnet Model Card Addendum, 2024.
  3. Llama3-team, “The llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.
  4. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in NeurIPS, 2020.
  5. S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer, “Rethinking the role of demonstrations: What makes in-context learning work?” in ACL, 2022.
  6. I. Levy, B. Bogin, and J. Berant, “Diverse demonstrations improve in-context compositional generalization,” in ACL, 2023.
  7. J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” in NeurIPS, 2022.
  8. J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What makes good in-context examples for gpt-3333?” in ACL, 2021.
  9. T. Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh, “Calibrate before use: Improving few-shot performance of language models,” in ICML, 2021.
  10. T. Li, G. Zhang, Q. D. Do, X. Yue, and W. Chen, “Long-context llms struggle with long in-context learning,” arXiv preprint arXiv:2404.02060, 2024.
  11. N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang, “Lost in the middle: How language models use long contexts,” arXiv preprint arXiv:2404.02060, 2023.
  12. B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foundationpose: Unified 6d pose estimation and tracking of novel objects,” in CVPR, 2024.
  13. S. James, Z. Ma, D. Rovick Arrojo, and A. J. Davison, “Rlbench: The robot learning benchmark & learning environment,” RAL, 2020.
  14. Google, “Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,” arXiv preprint arXiv:2403.05530, 2024.
  15. H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in NeurIPS, 2024.
  16. F. Liu, K. Fang, P. Abbeel, and S. Levine, “Moka: Open-vocabulary robotic manipulation through mark-based visual prompting,” in RSS, 2024.
  17. Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao, “Look before you leap: Unveiling the power of gpt-4v in robotic vision-language planning,” arXiv preprint arXiv:2311.17842, 2023.
  18. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language supervision,” in ICML, 2021.
  19. M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby, “Simple open-vocabulary object detection with vision transformers,” in ECCV, 2022.
  20. S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al., “Grounding dino: Marrying dino with grounded pre-training for open-set object detection,” in ECCV, 2024.
  21. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, et al., “Segment anything,” in ICCV, 2023.
  22. W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models as zero-shot planners: Extracting actionable knowledge for embodied agents,” in ICML, 2022.
  23. W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer: Composable 3d value maps for robotic manipulation with language models,” in CORL, 2023.
  24. I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated robot task plans using large language models,” in ICRA, 2023.
  25. M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, et al., “Do as i can, not as i say: Grounding language in robotic affordances,” arXiv preprint arXiv:2204.01691, 2022.
  26. A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, et al., “Socratic models: Composing zero-shot multimodal reasoning with language,” in ICLR, 2023.
  27. B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. S. Ryoo, A. Stone, and D. Kappler, “Open-vocabulary queryable scene representations for real world planning,” in ICRA, 2023.
  28. J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox, and R. Krishna, “Manipulate-anything: Automating real-world robots using vision-language models,” arXiv preprint arXiv:2406.18915, 2024.
  29. J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng, “Code as policies: Language model programs for embodied control,” in ICRA, 2023.
  30. G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar, “Voyager: An open-ended embodied agent with large language models,” in TMLR, 2024.
  31. C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps for robot navigation,” in ICRA, 2023.
  32. K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion: From natural language instructions to feasible plans,” Autonomous Robots, 2023.
  33. W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. Gonzalez Arenas, H.-T. Lewis Chiang, T. Erez, L. Hasenclever, J. Humplik, B. Ichter, T. Xiao, P. Xu, A. Zeng, T. Zhang, N. Heess, D. Sadigh, J. Tan, Y. Tassa, and F. Xia, “Language to rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647, 2023.
  34. W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei, “Rekep: Spatio-temporal reasoning of relational keypoint constraints for robotic manipulation,” arXiv preprint arXiv:2409.01652, 2024.
  35. D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and K. Hausman, “Mt-opt: Continuous multi-task robotic reinforcement learning at scale,” arXiv preprint arXiv:2104.08212, 2021.
  36. E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with robotic imitation learning,” in CORL, 2022.
  37. N. Di Palo and E. Johns, “Keypoint action tokens enable in-context imitation learning in robotics,” in RSS, 2024.
  38. Y.-J. Wang, B. Zhang, J. Chen, and K. Sreenath, “Prompt a robot to walk with large language models,” arXiv preprint arXiv:2309.09969, 2023.
  39. A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess, A. Dubey, C. Finn, et al., “Rt-2: Vision-language-action models transfer web knowledge to robotic control,” in CORL, 2023.
  40. OXE-team, “Open x-embodiment: Robotic learning datasets and rt-x models,” in ICRA, 2024.
  41. A. Sohn, A. Nagabandi, C. Florensa, D. Adelberg, D. Wu, H. Farooq, I. Clavera, J. Welborn, J. Chen, N. Mishra, P. Chen, P. Qian, P. Abbeel, R. Duan, V. Vijay, and Y. Liu, “Introducing rfm-1: Giving robots human-like reason- ing capabilities,” 2024. [Online]. Available: https://covariant.ai/insights/introducing-rfm-1-giving-robots-human-like-reasoning-capabilities
  42. D. Niu, Y. Sharma, G. Biamby, J. Quenum, Y. Bai, B. Shi, T. Darrell, and R. Herzig, “Llarva: Vision-action instruction tuning enhances robot learning,” arXiv preprint arXiv:2406.11815, 2024.
  43. M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine, P. Liang, and C. Finn, “Openvla: An open-source vision-language-action model,” in CORL, 2024.
  44. M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski, “Dinov2: Learning robust visual features without supervision,” arXiv preprint arXiv: 2304.07193, 2024.
  45. X. Li, C. Mata, J. Park, K. Kahatapitiya, Y. S. Jang, J. Shang, K. Ranasinghe, R. Burgert, M. Cai, Y. J. Lee, and M. S. Ryoo, “Llara: Supercharging robot learning data for vision-language policy,” arXiv preprint arXiv: 2406.20095, 2024.
  46. L. Wang, X. Chen, J. Zhao, and K. He, “Scaling proprioceptive-visual learning with heterogeneous pre-trained transformers,” in NeurIPS, 2024.
  47. H. J. Kim, H. Cho, J. Kim, T. Kim, K. M. Yoo, and S. goo Lee, “Self-generated in-context learning: Leveraging auto-regressive language models as a demonstration generator,” in NAACL workshop, 2022.
  48. M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language models trained on code,” in ICML, 2021.
  49. H. Zhou, A. Nova, H. Larochelle, A. Courville, B. Neyshabur, and H. Sedghi, “Teaching algorithmic reasoning via in-context learning,” in NeurIPS, 2023.
  50. B. Huang, C. Mitra, A. Arbelle, L. Karlinsky, T. Darrell, and R. Herzig, “Multimodal task vectors enable many-shot multimodal in-context learning,” arXiv preprint arXiv:2406.15334, 2024.
  51. S. Mirchandani, F. Xia, P. Florence, B. Ichter, D. Driess, M. G. Arenas, K. Rao, D. Sadigh, and A. Zeng, “Large language models as general pattern machines,” in CORL, 2023.
  52. J. Y. Zhu, C. G. Cano, D. V. Bermudez, and M. Drozdzal, “Incoro: In-context learning for robotics control with feedback loops,” arXiv preprint arXiv:2402.05188, 2024.
  53. S. James and A. J. Davison, “Q-attention: Enabling efficient learning for vision-based robotic manipulation,” RAL, 2022.
  54. A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox, “Rvt-2: Learning precise manipulation from few demonstrations,” in RSS, 2024.
  55. T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki, “Act3d: 3d feature field transformers for multi-task robotic manipulation,” in CORL, 2023.
  56. N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland, L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dollár, and C. Feichtenhofer, “Sam 2: Segment anything in images and videos,” arXiv preprint arXiv:2408.00714, 2024.
  57. I. Radosavovic, B. Shi, L. Fu, K. Goldberg, T. Darrell, and J. Malik, “Robot learning with sensorimotor pre-training,” in CORL, 2023.
  58. Y. Lin, A. S. Wang, G. Sutanto, A. Rai, and F. Meier, “Polymetis,” 2021.
  59. J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han, F. Huang, B. Hui, L. Ji, M. Li, J. Lin, R. Lin, D. Liu, G. Liu, C. Lu, K. Lu, J. Ma, R. Men, X. Ren, X. Ren, C. Tan, S. Tan, J. Tu, P. Wang, S. Wang, W. Wang, S. Wu, B. Xu, J. Xu, A. Yang, H. Yang, J. Yang, S. Yang, Y. Yao, B. Yu, H. Yuan, Z. Yuan, J. Zhang, X. Zhang, Y. Zhang, Z. Zhang, C. Zhou, J. Zhou, X. Zhou, and T. Zhu, “Qwen technical report,” arXiv preprint arXiv:2309.16609, 2023.
  60. Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine, “Octo: An open-source generalist robot policy,” in RSS, 2024.
  61. A. Holtzman, P. West, V. Shwartz, Y. Choi, and L. Zettlemoyer, “Surface form competition: Why the highest probability answer isn’t always right,” arXiv preprint arXiv:2104.08315, 2022.

Summary

  • The paper introduces RoboPrompt, a framework that uses in-context learning to predict robot actions from textual descriptions without additional fine-tuning.
  • It transforms robot action episodes into structured text through keyframe identification and prompt construction, achieving a 51.8% success rate across 16 RLBench tasks.
  • Real-world experiments with a Franka Emika Panda robot highlight RoboPrompt’s robustness to pose estimation errors and its potential for versatile autonomous manipulation.

In-Context Learning Enables Robot Action Prediction in LLMs

In the paper titled "In-Context Learning Enables Robot Action Prediction in LLMs," the authors present a novel framework, RoboPrompt, which leverages the capabilities of LLMs to predict robot actions without requiring additional training. This approach capitalizes on the in-context learning (ICL) abilities intrinsic to LLMs, a feature that has remained largely unexplored in the domain of robotics.

Key Contributions

The principal contribution of this work is the introduction of a method that empowers text-only LLMs to perform robot action prediction directly through ICL. Notably, RoboPrompt achieves this by transforming episodes of robot actions into textual descriptions, allowing the LLM to process them as structured ICL demonstrations. This transformation is achieved without any finetuning of the models, distinguishing RoboPrompt from traditional approaches requiring extensive training data.

Methodology

The RoboPrompt framework comprises three critical steps:

  1. Keyframe Identification: The method identifies keyframes from robot action episodes based on joint velocities and gripper state changes. This reduction effectively condenses the episode while preserving essential information for action prediction.
  2. Textual Representation: Essential elements of an episode, including the end-effector actions and estimated object poses, are converted into textual descriptions. This transformation ensures compatibility with the processing capabilities of LLMs.
  3. ICL Prompt Construction: A structured prompt is formulated from the textual descriptions and task instructions to produce ICL examples. During inference, these examples enable the LLM to predict novel robot actions based on new observations.

Results and Analysis

The empirical evaluation of RoboPrompt spans both simulated environments and real-world settings, demonstrating superior performance over several zero-shot and ICL baselines. Specifically, RoboPrompt achieved a 51.8% average success rate across 16 RLBench tasks, a notable improvement over other methods like VoxPoser and KAT. This performance is attributed to the efficacy of ICL in leveraging structured prompts without further model training.

In real-world experiments using a Franka Emika Panda robot, RoboPrompt maintained high success rates in manipulation tasks, highlighting its applicability to practical scenarios. The paper also reveals its robustness to pose estimation errors and its scaling capability with the number of ICL examples, further validating its potential utility.

Implications and Future Directions

The implications of RoboPrompt are significant for the field of robotics, offering a pathway to deploy LLMs for robot instruction and manipulation tasks without the overhead of extensive retraining. The framework's reliance on textual data aligns well with the typical input LLMs are designed to handle, enabling seamless integration into existing robotic workflows.

Looking forward, the paper identifies several areas for exploration. The adaptation of RoboPrompt to high-frequency control tasks, such as those required by humanoid robots, represents a potential avenue for enhancement. Additionally, extending the framework to more complex, multi-agent, or bimanual manipulation scenarios could broaden its applicability.

While the results are promising, the reliance on static observations (open-loop planning) invites opportunities for improving dynamic task adaptability (closed-loop approaches). Future work may include incorporating continuous feedback mechanisms to refine predictions iteratively.

Conclusion

The RoboPrompt framework illustrates the compelling potential of LLMs for robotics, offering a methodology that bridges language processing and robotic action prediction through ICL. Its success underscores the emergent utility of LLMs beyond traditional NLP settings, promising enhanced capabilities for autonomous systems across various domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube