Papers
Topics
Authors
Recent
2000 character limit reached

Machine learning approach to brain tumor detection and classification (2410.12692v2)

Published 16 Oct 2024 in cs.CV and cs.LG

Abstract: Brain tumor detection and classification are critical tasks in medical image analysis, particularly in early-stage diagnosis, where accurate and timely detection can significantly improve treatment outcomes. In this study, we apply various statistical and machine learning models to detect and classify brain tumors using brain MRI images. We explore a variety of statistical models including linear, logistic, and Bayesian regressions, and the machine learning models including decision tree, random forest, single-layer perceptron, multi-layer perceptron, convolutional neural network (CNN), recurrent neural network, and long short-term memory. Our findings show that CNN outperforms other models, achieving the best performance. Additionally, we confirm that the CNN model can also work for multi-class classification, distinguishing between four categories of brain MRI images such as normal, glioma, meningioma, and pituitary tumor images. This study demonstrates that machine learning approaches are suitable for brain tumor detection and classification, facilitating real-world medical applications in assisting radiologists with early and accurate diagnosis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.