Papers
Topics
Authors
Recent
2000 character limit reached

Algebraic Language Theory with Effects

Published 16 Oct 2024 in cs.FL | (2410.12569v2)

Abstract: Regular languages -- the languages accepted by deterministic finite automata -- are known to be precisely the languages recognized by finite monoids. This characterization is the origin of algebraic language theory. In this paper, we generalize the correspondence between automata and monoids to automata with generic computational effects given by a monad, providing the foundations of an effectful algebraic language theory. We show that, under suitable conditions on the monad, a language is computable by an effectful automaton precisely when it is recognizable by (1) an effectful monoid morphism into an effect-free finite monoid, and (2) a monoid morphism into a monad-monoid bialgebra whose carrier is a finitely generated algebra for the monad, the former mode of recognition being conceptually completely new. Our prime application is a novel algebraic approach to languages computed by probabilistic finite automata. Additionally, we derive new algebraic characterizations for nondeterministic probabilistic finite automata and for weighted finite automata over unrestricted semirings, generalizing previous results on weighted algebraic recognition over commutative rings.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.