Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Fill In The Gaps: Model Calibration and Generalization with Synthetic Data (2410.10864v1)

Published 7 Oct 2024 in cs.CL, cs.AI, and cs.LG

Abstract: As machine learning models continue to swiftly advance, calibrating their performance has become a major concern prior to practical and widespread implementation. Most existing calibration methods often negatively impact model accuracy due to the lack of diversity of validation data, resulting in reduced generalizability. To address this, we propose a calibration method that incorporates synthetic data without compromising accuracy. We derive the expected calibration error (ECE) bound using the Probably Approximately Correct (PAC) learning framework. LLMs, known for their ability to mimic real data and generate text with mixed class labels, are utilized as a synthetic data generation strategy to lower the ECE bound and improve model accuracy on real test data. Additionally, we propose data generation mechanisms for efficient calibration. Testing our method on four different natural language processing tasks, we observed an average up to 34\% increase in accuracy and 33\% decrease in ECE.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.