Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Accelerating Drug Discovery in AutoDock-GPU with Tensor Cores (2410.10447v1)

Published 14 Oct 2024 in cs.DC

Abstract: In drug discovery, molecular docking aims at characterizing the binding of a drug-like molecule to a macromolecule. AutoDock-GPU, a state-of-the-art docking software, estimates the geometrical conformation of a docked ligand-protein complex by minimizing a scoring function. Our profiling results indicate that the current reduction operation that is heavily used in the scoring function is sub-optimal. Thus, we developed a method to accelerate the sum reduction of four-element vectors using matrix operations on NVIDIA Tensor Cores. We integrated the new reduction operation into AutoDock-GPU and evaluated it on multiple chemical complexes on three GPUs. Our results show that our method for reduction operation is 4-7 times faster than the AutoDock-GPU baseline. We also evaluated the impact of our method on the overall simulation time in the real-world docking simulation and achieved a 27% improvement on the average docking time.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.