Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A Quantum Circuit-Based Compression Perspective for Parameter-Efficient Learning (2410.09846v2)

Published 13 Oct 2024 in quant-ph

Abstract: Quantum-centric supercomputing presents a compelling framework for large-scale hybrid quantum-classical tasks. Although quantum machine learning (QML) offers theoretical benefits in various applications, challenges such as large-size data encoding in the input stage and the reliance on quantum resources in the inference stage limit its practicality for tasks like fine-tuning LLMs. Quantum parameter generation, a novel approach of QML, addresses these limitations by using quantum neural networks (QNNs) to generate classical model weights (parameters) exclusively during training, thereby decoupling inference from quantum hardware. In this work, we introduce Quantum Parameter Adaptation (QPA) in the framework of quantum parameter generation, which integrates QNNs with a classical multi-layer perceptron mapping model to generate parameters for fine-tuning methods. Using Gemma-2 and GPT-2 as case studies, QPA demonstrates significant parameter reduction for parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), while maintaining comparable or improved performance in text generation tasks. Specifically, QPA reduces the number of parameters to $52.06\%$ of the original LoRA for GPT-2 with a slight performance gain of $0.75\%$, and to $16.84\%$ for Gemma-2, with a marginal performance improvement of $0.07\%$. These results highlight QPA's ability to achieve efficient parameter reduction without sacrificing performance in the quantum parameter generation framework. This work showcases the potential of quantum-enhanced parameter reduction, offering a scalable quantum-classical solution for fine-tuning LLMs while preserving the feasibility of inference on classical hardware.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube