Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Can Large Language Models Generate Geospatial Code? (2410.09738v2)

Published 13 Oct 2024 in cs.SE

Abstract: With the growing demand for spatiotemporal data processing and geospatial modeling, automating geospatial code generation has become essential for productivity. LLMs show promise in code generation but face challenges like domain-specific knowledge gaps and "coding hallucinations." This paper introduces GeoCode-Eval (GCE), a framework for assessing LLMs' ability to generate geospatial code across three dimensions: "Cognition and Memory," "Comprehension and Interpretation," and "Innovation and Creation," distributed across eight capability levels. We developed a benchmark dataset, GeoCode-Bench, consisting of 5,000 multiple-choice, 1,500 fill-in-the-blank, 1,500 true/false questions, and 1,000 subjective tasks covering code summarization, generation, completion, and correction. Using GeoCode-Bench, we evaluated three commercial closed-source LLMs, four open-source general-purpose LLMs, and 14 specialized code generation models. We also conducted experiments on few-shot and zero-shot learning, Chain of Thought reasoning, and multi-round majority voting to measure their impact on geospatial code generation. Additionally, we fine-tuned the Code LLaMA-7B model using Google Earth Engine-related JavaScript, creating GEECode-GPT, and evaluated it on subjective tasks. Results show that constructing pre-training and instruction datasets significantly improves code generation, offering insights for optimizing LLMs in specific domains.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.