Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PAR: Prompt-Aware Token Reduction Method for Efficient Large Multimodal Models (2410.07278v2)

Published 9 Oct 2024 in cs.CV and cs.AI

Abstract: Multimodal LLMs (MLLMs) demonstrate strong performance across visual tasks, but their efficiency is hindered by significant computational and memory demands from processing long contexts in multimodal inputs. To address this, we introduce PAR (Prompt-Aware Token Reduction), a novel and plug-and-play approach that reduces visual tokens efficiently without compromising model performance. Unlike previous methods that rely heavily on attention mechanisms and overlooking cross-modal interactions , we uses a prompt-aware strategy to adpative identify and cluster essential visual tokens. PAR categorizes visual context redundancy into two types: external and internal. External redundancy is minimized through semantic retrieval, while internal redundancy is addressed using a token routing mechanism. This method substantially reduces computational load without requiring additional training or complex architectural modifications. \textbf{Experimental results demonstrate that across various visual question answering tasks, PAR reduces FLOPs by 83\% with a compression ratio of 89\%, while retaining 97\% of baseline accuracy.} The adaptive design of PAR achieves a 2x token reduction ratio compared to prior approaches, enabling a better balance between performance and efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.