Papers
Topics
Authors
Recent
2000 character limit reached

Identification and estimation for matrix time series CP-factor models (2410.05634v2)

Published 8 Oct 2024 in stat.ME, cs.LG, and econ.EM

Abstract: We propose a new method for identifying and estimating the CP-factor models for matrix time series. Unlike the generalized eigenanalysis-based method of Chang et al.(2023) for which the convergence rates may suffer from small eigengaps as the asymptotic theory is based on some matrix perturbation analysis, the proposed new method enjoys faster convergence rates which are free from any eigengaps. It achieves this by turning the problem into a joint diagonalization of several matrices whose elements are determined by a basis of a linear system, and by choosing the basis carefully to avoid near co-linearity (see Proposition 5 and Section 4.3 below). Furthermore, unlike Chang et al.(2023) which requires the two factor loading matrices to be full-ranked, the new method can handle rank-deficient factor loading matrices. Illustration with both simulated and real matrix time series data shows the advantages of the proposed new method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.