Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive efficiency of information processing in immune-pathogen co-evolution (2410.04693v2)

Published 7 Oct 2024 in q-bio.PE

Abstract: Organisms have evolved immune systems that can counter pathogenic threats. The adaptive immune system in vertebrates consists of a diverse repertoire of immune receptors that can dynamically reorganize to specifically target the ever-changing pathogenic landscape. Pathogens in return evolve to escape the immune challenge, forming an co-evolutionary arms race. We introduce a formalism to characterize out-of-equilibrium interactions in co-evolutionary processes. We show that the rates of information exchange and entropy production can distinguish the leader from the follower in an evolutionary arms races. Lastly, we introduce co-evolutionary efficiency as a metric to quantify each population's ability to exploit information in response to the other. Our formalism provides insights into the conditions necessary for stable co-evolution and establishes bounds on the limits of information exchange and adaptation in co-evolving systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. Luo and A. S. Perelson, Proceedings of the National Academy of Sciences 112, 11654 (2015), https://www.pnas.org/doi/pdf/10.1073/pnas.1505207112 .
  2. G. D. Victora and M. C. Nussenzweig, Annu. Rev. Immunol. 40, 413 (2022).
  3. P. Barrat-Charlaix and R. A. Neher, eLife  (2024), 10.7554/elife.97350.1.
  4. O. H. Schnaack and A. Nourmohammad, Elife 10 (2021), 10.7554/eLife.61346.
  5. N. H. Barton and H. P. de Vladar, Genetics 181, 997 (2009).
  6. G. Sella and A. E. Hirsh, Proc. Natl. Acad. Sci. U. S. A. 102, 9541 (2005).
  7. V. Mustonen and M. Lässig, Proc. Natl. Acad. Sci. U. S. A. 102, 15936 (2005).
  8. V. Mustonen and M. Lässig, Trends Genet. 25, 111 (2009).
  9. V. Mustonen and M. Lässig, Proc. Natl. Acad. Sci. U. S. A. 107, 4248 (2010).
  10. T. J. Kobayashi and Y. Sughiyama, Phys. Rev. Lett. 115, 238102 (2015).
  11. Y. Sughiyama and T. J. Kobayashi, Phys. Rev. E 95, 012131 (2017).
  12. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
  13. G. E. Crooks, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60, 2721 (1999).
  14. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
  15. T. Sagawa and M. Ueda, Phys. Rev. Lett. 109, 180602 (2012).
  16. T. Sagawa and M. Ueda, New J. Phys. 15, 125012 (2013).
  17. A. C. Barato and U. Seifert, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 042150 (2014).
  18. J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014).
  19. M. Kimura, Nature 217, 624 (1968).
  20. R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
  21. K. Koelle and D. A. Rasmussen, Elife 4, e07361 (2015).
  22. R. Swanstrom and R. F. Schinazi, Science 375, 497 (2022).
  23. M. P. Leighton and D. A. Sivak, Phys. Rev. Lett. 130, 178401 (2023).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.