Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Policy Iteration Algorithm for N-player General-Sum Linear Quadratic Dynamic Games (2410.03106v1)

Published 4 Oct 2024 in math.OC, cs.SY, and eess.SY

Abstract: We present a policy iteration algorithm for the infinite-horizon N-player general-sum deterministic linear quadratic dynamic games and compare it to policy gradient methods. We demonstrate that the proposed policy iteration algorithm is distinct from the Gauss-Newton policy gradient method in the N-player game setting, in contrast to the single-player setting where under suitable choice of step size they are equivalent. We illustrate in numerical experiments that the convergence rate of the proposed policy iteration algorithm significantly surpasses that of the Gauss-Newton policy gradient method and other policy gradient variations. Furthermore, our numerical results indicate that, compared to policy gradient methods, the convergence performance of the proposed policy iteration algorithm is less sensitive to the initial policy and changes in the number of players.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: