Estimating Generalization Performance Along the Trajectory of Proximal SGD in Robust Regression (2410.02629v2)
Abstract: This paper studies the generalization performance of iterates obtained by Gradient Descent (GD), Stochastic Gradient Descent (SGD) and their proximal variants in high-dimensional robust regression problems. The number of features is comparable to the sample size and errors may be heavy-tailed. We introduce estimators that precisely track the generalization error of the iterates along the trajectory of the iterative algorithm. These estimators are provably consistent under suitable conditions. The results are illustrated through several examples, including Huber regression, pseudo-Huber regression, and their penalized variants with non-smooth regularizer. We provide explicit generalization error estimates for iterates generated from GD and SGD, or from proximal SGD in the presence of a non-smooth regularizer. The proposed risk estimates serve as effective proxies for the actual generalization error, allowing us to determine the optimal stopping iteration that minimizes the generalization error. Extensive simulations confirm the effectiveness of the proposed generalization error estimates.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.