Papers
Topics
Authors
Recent
2000 character limit reached

Multisoliton solutions for equivariant wave maps on a $2+1$ dimensional wormhole (2410.02020v2)

Published 2 Oct 2024 in math.AP, gr-qc, math-ph, math.MP, and nlin.PS

Abstract: We study equivariant wave maps from the $2+1$ dimensional wormhole to the 2-sphere. This model has explicit harmonic map solutions which, in suitable coordinates, have the form of the sine-Gordon kinks/anti-kinks. We conjecture that there exist asymptotically static chains of $N\geq 2$ alternating kinks and anti-kinks whose subsequent rates of expansion increase in geometric progression as $t\rightarrow \infty$. Our argument employs the method of collective coordinates to derive effective finite-dimensional ODE models for the asymptotic dynamics of $N$-chains. For $N=2,3$ the predictions of these effective models are verified by direct PDE computations which demonstrate that the $N$-chains lie at the threshold of kink-anti-kink annihilation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.