Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning grid cells by predictive coding (2410.01022v2)

Published 1 Oct 2024 in q-bio.NC

Abstract: Grid cells in the medial entorhinal cortex (MEC) of the mammalian brain exhibit a strikingly regular hexagonal firing field over space. These cells are learned after birth and are thought to support spatial navigation but also more abstract computations. Although various computational models, including those based on artificial neural networks, have been proposed to explain the formation of grid cells, the process through which the MEC circuit ${\it learns}$ to develop grid cells remains unclear. In this study, we argue that predictive coding, a biologically plausible plasticity rule known to learn visual representations, can also train neural networks to develop hexagonal grid representations from spatial inputs. We demonstrate that grid cells emerge robustly through predictive coding in both static and dynamic environments, and we develop an understanding of this grid cell learning capability by analytically comparing predictive coding with existing models. Our work therefore offers a novel and biologically plausible perspective on the learning mechanisms underlying grid cells. Moreover, it extends the predictive coding theory to the hippocampal formation, suggesting a unified learning algorithm for diverse cortical representations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mufeng Tang (6 papers)
  2. Helen Barron (2 papers)
  3. Rafal Bogacz (17 papers)

Summary

We haven't generated a summary for this paper yet.