Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Training of Large Vision Models via Advanced Automated Progressive Learning (2410.00350v1)

Published 6 Sep 2024 in cs.CV and cs.AI

Abstract: The rapid advancements in Large Vision Models (LVMs), such as Vision Transformers (ViTs) and diffusion models, have led to an increasing demand for computational resources, resulting in substantial financial and environmental costs. This growing challenge highlights the necessity of developing efficient training methods for LVMs. Progressive learning, a training strategy in which model capacity gradually increases during training, has shown potential in addressing these challenges. In this paper, we present an advanced automated progressive learning (AutoProg) framework for efficient training of LVMs. We begin by focusing on the pre-training of LVMs, using ViTs as a case study, and propose AutoProg-One, an AutoProg scheme featuring momentum growth (MoGrow) and a one-shot growth schedule search. Beyond pre-training, we extend our approach to tackle transfer learning and fine-tuning of LVMs. We expand the scope of AutoProg to cover a wider range of LVMs, including diffusion models. First, we introduce AutoProg-Zero, by enhancing the AutoProg framework with a novel zero-shot unfreezing schedule search, eliminating the need for one-shot supernet training. Second, we introduce a novel Unique Stage Identifier (SID) scheme to bridge the gap during network growth. These innovations, integrated with the core principles of AutoProg, offer a comprehensive solution for efficient training across various LVM scenarios. Extensive experiments show that AutoProg accelerates ViT pre-training by up to 1.85x on ImageNet and accelerates fine-tuning of diffusion models by up to 2.86x, with comparable or even higher performance. This work provides a robust and scalable approach to efficient training of LVMs, with potential applications in a wide range of vision tasks. Code: https://github.com/changlin31/AutoProg-Zero

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.