Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SEE: Semantically Aligned EEG-to-Text Translation (2409.16312v1)

Published 14 Sep 2024 in q-bio.QM, cs.AI, and eess.SP

Abstract: Decoding neurophysiological signals into language is of great research interest within brain-computer interface (BCI) applications. Electroencephalography (EEG), known for its non-invasiveness, ease of use, and cost-effectiveness, has been a popular method in this field. However, current EEG-to-Text decoding approaches face challenges due to the huge domain gap between EEG recordings and raw texts, inherent data bias, and small closed vocabularies. In this paper, we propose SEE: Semantically Aligned EEG-to-Text Translation, a novel method aimed at improving EEG-to-Text decoding by seamlessly integrating two modules into a pre-trained BART LLM. These two modules include (1) a Cross-Modal Codebook that learns cross-modal representations to enhance feature consolidation and mitigate domain gap, and (2) a Semantic Matching Module that fully utilizes pre-trained text representations to align multi-modal features extracted from EEG-Text pairs while considering noise caused by false negatives, i.e., data from different EEG-Text pairs that have similar semantic meanings. Experimental results on the Zurich Cognitive Language Processing Corpus (ZuCo) demonstrate the effectiveness of SEE, which enhances the feasibility of accurate EEG-to-Text decoding.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.