Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay (2409.15595v1)

Published 23 Sep 2024 in cs.AI and eess.SP

Abstract: Linear control models have gained extensive application in vehicle control due to their simplicity, ease of use, and support for stability analysis. However, these models lack adaptability to the changing environment and multi-objective settings. Reinforcement learning (RL) models, on the other hand, offer adaptability but suffer from a lack of interpretability and generalization capabilities. This paper aims to develop a family of RL-based controllers enhanced by physics-informed policies, leveraging the advantages of both physics-based models (data-efficient and interpretable) and RL methods (flexible to multiple objectives and fast computing). We propose the Physics-Enhanced Residual Policy Learning (PERPL) framework, where the physics component provides model interpretability and stability. The learning-based Residual Policy adjusts the physics-based policy to adapt to the changing environment, thereby refining the decisions of the physics model. We apply our proposed model to decentralized control to mixed traffic platoon of Connected and Automated Vehicles (CAVs) and Human-driven Vehicles (HVs) using a constant time gap (CTG) strategy for cruising and incorporating actuator and communication delays. Experimental results demonstrate that our method achieves smaller headway errors and better oscillation dampening than linear models and RL alone in scenarios with artificially extreme conditions and real preceding vehicle trajectories. At the macroscopic level, overall traffic oscillations are also reduced as the penetration rate of CAVs employing the PERPL scheme increases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.