Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Complexity of Neural Computation in Superposition (2409.15318v2)

Published 5 Sep 2024 in cs.CC, cs.AI, cs.DS, and cs.NE

Abstract: Superposition, the ability of neural networks to represent more features than neurons, is increasingly seen as key to the efficiency of large models. This paper investigates the theoretical foundations of computing in superposition, establishing complexity bounds for explicit, provably correct algorithms. We present the first lower bounds for a neural network computing in superposition, showing that for a broad class of problems, including permutations and pairwise logical operations, computing $m'$ features in superposition requires at least $\Omega(\sqrt{m' \log m'})$ neurons and $\Omega(m' \log m')$ parameters. This implies the first subexponential upper bound on superposition capacity: a network with $n$ neurons can compute at most $O(n2 / \log n)$ features. Conversely, we provide a nearly tight constructive upper bound: logical operations like pairwise AND can be computed using $O(\sqrt{m'} \log m')$ neurons and $O(m' \log2 m')$ parameters. There is thus an exponential gap between the complexity of computing in superposition (the subject of this work) versus merely representing features, which can require as little as $O(\log m')$ neurons based on the Johnson-Lindenstrauss Lemma. Our hope is that our results open a path for using complexity theoretic techniques in neural network interpretability research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: