Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Real Zeroes of Half-integral Weight Hecke Cusp Forms (2409.15271v2)

Published 23 Sep 2024 in math.NT

Abstract: We examine the distribution of zeroes of half-integral weight Hecke cusp forms on the manifold $\Gamma_0(4)\backslash\mathbb H$ near a cusp at infinity. In analogue of the Ghosh-Sarnak conjecture for classical holomorphic Hecke cusp forms, one expects that almost all of the zeroes sufficiently close to this cusp lie on two vertical geodesics $\Re(s)=-1/2$ and $\Re(s)=0$ as the weight tends to infinity. We show that, for $\gg_\varepsilon K2/(\log K){3/2+\varepsilon}$ of the half-integral weight Hecke cusp forms in the Kohnen plus subspace with weight bounded by a large constant $K$, the number of such "real" zeroes grows almost at the expected rate. We also obtain a weaker lower bound for the number of real zeroes that holds for a positive proportion of forms. One of the key ingredients is the asymptotic evaluation of averaged first and second moments of quadratic twists of modular $L$-functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: