Papers
Topics
Authors
Recent
2000 character limit reached

Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting (2409.14747v5)

Published 23 Sep 2024 in cs.CV and cs.AI

Abstract: With the explosive growth of deep learning applications and increasing privacy concerns, the right to be forgotten has become a critical requirement in various AI industries. For example, given a facial recognition system, some individuals may wish to remove their personal data that might have been used in the training phase. Unfortunately, deep neural networks sometimes unexpectedly leak personal identities, making this removal challenging. While recent machine unlearning algorithms aim to enable models to forget specific data, we identify an unintended utility drop-correlation collapse-in which the essential correlations between image features and true labels weaken during the forgetting process. To address this challenge, we propose Distribution-Level Feature Distancing (DLFD), a novel method that efficiently forgets instances while preserving task-relevant feature correlations. Our method synthesizes data samples by optimizing the feature distribution to be distinctly different from that of forget samples, achieving effective results within a single training epoch. Through extensive experiments on facial recognition datasets, we demonstrate that our approach significantly outperforms state-of-the-art machine unlearning methods in both forgetting performance and model utility preservation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.