Adaptive Feedforward Gradient Estimation in Neural ODEs (2409.14549v1)
Abstract: Neural Ordinary Differential Equations (Neural ODEs) represent a significant breakthrough in deep learning, promising to bridge the gap between machine learning and the rich theoretical frameworks developed in various mathematical fields over centuries. In this work, we propose a novel approach that leverages adaptive feedforward gradient estimation to improve the efficiency, consistency, and interpretability of Neural ODEs. Our method eliminates the need for backpropagation and the adjoint method, reducing computational overhead and memory usage while maintaining accuracy. The proposed approach has been validated through practical applications, and showed good performance relative to Neural ODEs state of the art methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.