Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive Feedforward Gradient Estimation in Neural ODEs

Published 22 Sep 2024 in cs.LG | (2409.14549v1)

Abstract: Neural Ordinary Differential Equations (Neural ODEs) represent a significant breakthrough in deep learning, promising to bridge the gap between machine learning and the rich theoretical frameworks developed in various mathematical fields over centuries. In this work, we propose a novel approach that leverages adaptive feedforward gradient estimation to improve the efficiency, consistency, and interpretability of Neural ODEs. Our method eliminates the need for backpropagation and the adjoint method, reducing computational overhead and memory usage while maintaining accuracy. The proposed approach has been validated through practical applications, and showed good performance relative to Neural ODEs state of the art methods.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.