Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Jordan Type stratification of spaces of commuting nilpotent matrices (2409.13553v2)

Published 20 Sep 2024 in math.AC and math.CO

Abstract: An $n\times n$ nilpotent matrix $B$ is determined up to conjugacy by a partition $P_B$ of $n$, its Jordan type given by the sizes of its Jordan blocks. The Jordan type $\mathfrak D(P)$ of a nilpotent matrix in the dense orbit of the nilpotent commutator of a given nilpotent matrix of Jordan type $P$ is stable - has parts differing pairwise by at least two - and was determined by R. Basili. The second two authors, with B. Van Steirteghem and R. Zhao determined a rectangular table of partitions $\mathfrak D{-1}(Q)$ having a given stable partition $Q$ as the Jordan type of its maximum nilpotent commutator. They proposed a box conjecture, that would generalize the answer to stable partitions $Q$ having $\ell$ parts: it was proven recently by J.~Irving, T. Ko\v{s}ir and M. Mastnak. Using this result and also some tropical calculations, the authors here determine equations defining the loci of each partition in $\mathfrak D{-1}(Q)$, when $Q$ is stable with two parts. The equations for each locus form a complete intersection. The authors propose a conjecture generalizing their result to arbitrary stable $Q$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.