Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Stain Separation Improves Cross-Scanner Adenocarcinoma Segmentation with Joint Multi-Task Learning (2409.13246v1)

Published 20 Sep 2024 in eess.IV and cs.CV

Abstract: Digital pathology has made significant advances in tumor diagnosis and segmentation, but image variability due to differences in organs, tissue preparation, and acquisition - known as domain shift - limits the effectiveness of current algorithms. The COSAS (Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation) challenge addresses this issue by improving the resilience of segmentation algorithms to domain shift, with Task 2 focusing on adenocarcinoma segmentation using a diverse dataset from six scanners, pushing the boundaries of clinical diagnostics. Our approach employs unsupervised learning through stain separation within a multi-task learning framework using a multi-decoder autoencoder. This model isolates stain matrix and stain density, allowing it to handle color variation and improve generalization across scanners. We further enhanced the robustness of the model with a mixture of stain augmentation techniques and used a U-net architecture for segmentation. The novelty of our method lies in the use of stain separation within a multi-task learning framework, which effectively disentangles histological structures from color variations. This approach shows promise for improving segmentation accuracy and generalization across different histopathological stains, paving the way for more reliable diagnostic tools in digital pathology.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.