Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Profiling Patient Transcript Using Large Language Model Reasoning Augmentation for Alzheimer's Disease Detection (2409.12541v1)

Published 19 Sep 2024 in cs.CL

Abstract: Alzheimer's disease (AD) stands as the predominant cause of dementia, characterized by a gradual decline in speech and language capabilities. Recent deep-learning advancements have facilitated automated AD detection through spontaneous speech. However, common transcript-based detection methods directly model text patterns in each utterance without a global view of the patient's linguistic characteristics, resulting in limited discriminability and interpretability. Despite the enhanced reasoning abilities of LLMs, there remains a gap in fully harnessing the reasoning ability to facilitate AD detection and model interpretation. Therefore, we propose a patient-level transcript profiling framework leveraging LLM-based reasoning augmentation to systematically elicit linguistic deficit attributes. The summarized embeddings of the attributes are integrated into an Albert model for AD detection. The framework achieves 8.51\% ACC and 8.34\% F1 improvements on the ADReSS dataset compared to the baseline without reasoning augmentation. Our further analysis shows the effectiveness of our identified linguistic deficit attributes and the potential to use LLM for AD detection interpretation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.