Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Methodology for Explainable Large Language Models with Integrated Gradients and Linguistic Analysis in Text Classification (2410.00250v1)

Published 30 Sep 2024 in cs.CL

Abstract: Neurological disorders that affect speech production, such as Alzheimer's Disease (AD), significantly impact the lives of both patients and caregivers, whether through social, psycho-emotional effects or other aspects not yet fully understood. Recent advancements in LLM architectures have developed many tools to identify representative features of neurological disorders through spontaneous speech. However, LLMs typically lack interpretability, meaning they do not provide clear and specific reasons for their decisions. Therefore, there is a need for methods capable of identifying the representative features of neurological disorders in speech and explaining clearly why these features are relevant. This paper presents an explainable LLM method, named SLIME (Statistical and Linguistic Insights for Model Explanation), capable of identifying lexical components representative of AD and indicating which components are most important for the LLM's decision. In developing this method, we used an English-language dataset consisting of transcriptions from the Cookie Theft picture description task. The LLM Bidirectional Encoder Representations from Transformers (BERT) classified the textual descriptions as either AD or control groups. To identify representative lexical features and determine which are most relevant to the model's decision, we used a pipeline involving Integrated Gradients (IG), Linguistic Inquiry and Word Count (LIWC), and statistical analysis. Our method demonstrates that BERT leverages lexical components that reflect a reduction in social references in AD and identifies which further improve the LLM's accuracy. Thus, we provide an explainability tool that enhances confidence in applying LLMs to neurological clinical contexts, particularly in the study of neurodegeneration.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube