Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals (2409.11769v2)

Published 18 Sep 2024 in math.NA and cs.NA

Abstract: In this article, we derive fully guaranteed error bounds for the energy of convex nonlinear mean-field models. These results apply in particular to Kohn-Sham equations with convex density functionals, which includes the reduced Hartree-Fock (rHF) model, as well as the Kohn-Sham model with exact exchange-density functional (which is unfortunately not explicit and therefore not usable in practice). We then decompose the obtained bounds into two parts, one depending on the chosen discretization and one depending on the number of iterations performed in the self-consistent algorithm used to solve the nonlinear eigenvalue problem, paving the way for adaptive refinement strategies. The accuracy of the bounds is demonstrated on a series of test cases, including a Silicon crystal and an Hydrogen Fluoride molecule simulated with the rHF model and discretized with planewaves. We also show that, although not anymore guaranteed, the error bounds remain very accurate for a Silicon crystal simulated with the Kohn-Sham model using nonconvex exchangecorrelation functionals of practical interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.