Papers
Topics
Authors
Recent
Search
2000 character limit reached

Geometrically constrained sine-Gordon field: BPS solitons and their collisions

Published 15 Sep 2024 in hep-th, nlin.PS, and nlin.SI | (2409.09767v3)

Abstract: We consider an enlarged $(1+1)$-dimensional model with two real scalar fields, $\phi$ and $\chi$ whose scalar potential $V(\phi,\chi)$ has a standard $\chi4$ sector and a sine-Gordon one for $\phi$. These fields are coupled through a generalizing function $f(\chi)$ that appears in the scalar potential and controls the nontrivial dynamics of $\phi$. We minimize the effective energy via the implementation of the BPS technique. We then obtain the Bogomol'nyi bound for the energy and the first-order equations whose solutions saturate that bound. We solve these equations for a nontrivial $f(\chi)$. As the result, BPS kinks with internal structures emerge. They exhibit a two-kink profile. i.e. an effect due to geometrical constrictions. We consider the linear stability of these new configurations. In this sense, we study the existence of internal modes that play an important role during the scattering process. We then investigate the kink-antikink collisions, and present the numerical results for the most interesting cases. We also comment about their most relevant features.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.