Papers
Topics
Authors
Recent
Search
2000 character limit reached

Diagnosis via Proofs of Unsatisfiability for First-Order Logic with Relational Objects

Published 13 Sep 2024 in cs.SE | (2409.09223v1)

Abstract: Satisfiability-based automated reasoning is an approach that is being successfully used in software engineering to validate complex software, including for safety-critical systems. Such reasoning underlies many validation activities, from requirements analysis to design consistency to test coverage. While generally effective, the back-end constraint solvers are often complex and inevitably error-prone, which threatens the soundness of their application. Thus, such solvers need to be validated, which includes checking correctness and explaining (un)satisfiability results returned by them. In this work, we consider satisfiability analysis based on First-Order Logic with relational objects (FOL*) which has been shown to be effective for reasoning about time- and data-sensitive early system designs. We tackle the challenge of validating the correctness of FOL* unsatisfiability results and deriving diagnoses to explain the causes of the unsatisfiability. Inspired by the concept of proofs of UNSAT from SAT/SMT solvers, we define a proof format and proof rules to track the solvers' reasoning steps as sequences of derivations towards UNSAT. We also propose an algorithm to verify the correctness of FOL* proofs while filtering unnecessary derivations and develop a proof-based diagnosis to explain the cause of unsatisfiability. We implemented the proposed proof support on top of the state-of-the-art FOL* satisfiability checker to generate proofs of UNSAT and validated our approach by applying the proof-based diagnoses to explain the causes of well-formedness issues of normative requirements of software systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.