Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WarmSwap: Sharing Dependencies for Accelerating Cold Starts in Serverless Functions (2409.09202v2)

Published 13 Sep 2024 in cs.DC

Abstract: This work presents WarmSwap, a novel provider-side cold-start optimization for serverless computing. This optimization reduces cold-start time when booting and loading dependencies at runtime inside a function container. Previous approaches to the optimization of cold starts tend to fall into two categories: optimizing the infrastructure of serverless computing to benefit all serverless functions; or function-specific tuning for individual serverless functions. In contrast, WarmSwap offers a broad middle ground, which optimizes entire categories of serverless functions. WarmSwap eliminates the need to initialize middleware or software dependencies when launching a new serverless container, by migrating a pre-initialized live dependency image to the new function instance. WarmSwap respects the provider's cache constraints, as a single pre-warmed dependency image in the cache is shared among all serverless functions requiring that software dependency image. WarmSwap has been tested on seven representative functions from FunctionBench. In those tests, WarmSwap accelerates dependency loading for serverless functions with large dependency requirements by a factor ranging from 2.2 to 3.2. Simulation experiments using Azure traces indicate that WarmSwap can save 88\% of optimization space when sharing a dependency image among ten different functions.

Summary

We haven't generated a summary for this paper yet.