A Sharp Higher Order Sobolev Inequality on Riemannian Manifolds (2409.08920v1)
Abstract: Let $ m, n $ be integers such that $ \frac{n}{2} > m \geq 1 $ and let $ (M, g) $ be a closed $ n-$dimensional Riemannian manifold. We prove there exists some $ B \in \mathbb{R} $ depending only on $ (M, g) $, $ m $, and $ n $ such that for all $ u \in H_m2(M) $, $$ \lVert u \rVert_{2#}2 \leq K(m,n) \int_M (\Delta\frac{m}{2} u)2 dv_g + B \lVert u \rVert_{H_{m-1}2(M)}2 $$ where $ 2# = \frac{2n}{n-2m} $, $ K(m,n) $ is the square of the best constant for the embedding $ W{m,2}(\mathbb{R}n) \subset L{2#}(\mathbb{R}n) $, $ H_m2(M) $ is the Sobolev space consisting of functions on $ M $ with $ m $ weak derivatives in $ L2(M) $, and $ \Delta\frac{m}{2} = \nabla \Delta{\frac{m-1}{2}} $ if $ m $ is odd. This inequality is sharp in the sense that $ K(m,n) $ cannot be lowered to any smaller constant. This extends the work of Hebey-Vaugon and Hebey which correspond respectively to the cases $ m=1 $ and $ m=2 $.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.