High-dimensional regression with a count response (2409.08821v1)
Abstract: We consider high-dimensional regression with a count response modeled by Poisson or negative binomial generalized linear model (GLM). We propose a penalized maximum likelihood estimator with a properly chosen complexity penalty and establish its adaptive minimaxity across models of various sparsity. To make the procedure computationally feasible for high-dimensional data we consider its LASSO and SLOPE convex surrogates. Their performance is illustrated through simulated and real-data examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.