Papers
Topics
Authors
Recent
2000 character limit reached

HSR-KAN: Efficient Hyperspectral Image Super-Resolution via Kolmogorov-Arnold Networks

Published 24 Aug 2024 in cs.CV | (2409.06705v2)

Abstract: Hyperspectral images (HSIs) have great potential in various visual tasks due to their rich spectral information. However, obtaining high-resolution hyperspectral images remains challenging due to limitations of physical imaging. Inspired by Kolmogorov-Arnold Networks (KANs), we propose an efficient HSI super-resolution (HSI-SR) model to fuse a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution HSI (HR-HSI). To achieve the effective integration of spatial information from HR-MSI, we design a fusion module based on KANs, called KAN-Fusion. Further inspired by the channel attention mechanism, we design a spectral channel attention module called KAN Channel Attention Block (KAN-CAB) for post-fusion feature extraction. As a channel attention module integrated with KANs, KAN-CAB not only enhances the fine-grained adjustment ability of deep networks, enabling networks to accurately simulate details of spectral sequences and spatial textures, but also effectively avoid Curse of Dimensionality. Extensive experiments show that, compared to current state-of-the-art HSI-SR methods, proposed HSR-KAN achieves the best performance in terms of both qualitative and quantitative assessments. Our code is available at: https://github.com/Baisonm-Li/HSR-KAN.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.