Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review (2409.06131v2)

Published 10 Sep 2024 in cs.CL and cs.AI

Abstract: Traditional LLM pretraining relies on autoregressive LLMing with randomly sampled data from web-scale datasets. Inspired by human learning techniques like spaced repetition, we hypothesize that random sampling leads to high training costs, lower-quality models, and significant data forgetting. To address these inefficiencies, we propose the Learn-Focus-Review (LFR) paradigm -- a dynamic training approach that adapts to the model's learning progress. LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset that are more prone to being forgotten, enabling better retention and more efficient learning. Using the LFR paradigm, we pretrained Llama and GPT models on the SlimPajama and OpenWebText datasets, respectively. These models were evaluated on downstream tasks across various domains, including question answering, problem-solving, commonsense reasoning, LLMing, and translation. Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy, while using only 5%--19% of the training tokens. Furthermore, LFR matched the performance of industry-standard Pythia models with up to 2$\times$ the parameter count, using just 3.2% of the training tokens, demonstrating its effectiveness and efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.