Papers
Topics
Authors
Recent
Search
2000 character limit reached

Ultron: Enabling Temporal Geometry Compression of 3D Mesh Sequences using Temporal Correspondence and Mesh Deformation

Published 8 Sep 2024 in cs.CV and cs.GR | (2409.05151v1)

Abstract: With the advancement of computer vision, dynamic 3D reconstruction techniques have seen significant progress and found applications in various fields. However, these techniques generate large amounts of 3D data sequences, necessitating efficient storage and transmission methods. Existing 3D model compression methods primarily focus on static models and do not consider inter-frame information, limiting their ability to reduce data size. Temporal mesh compression, which has received less attention, often requires all input meshes to have the same topology, a condition rarely met in real-world applications. This research proposes a method to compress mesh sequences with arbitrary topology using temporal correspondence and mesh deformation. The method establishes temporal correspondence between consecutive frames, applies a deformation model to transform the mesh from one frame to subsequent frames, and replaces the original meshes with deformed ones if the quality meets a tolerance threshold. Extensive experiments demonstrate that this method can achieve state-of-the-art performance in terms of compression performance. The contributions of this paper include a geometry and motion-based model for establishing temporal correspondence between meshes, a mesh quality assessment for temporal mesh sequences, an entropy-based encoding and corner table-based method for compressing mesh sequences, and extensive experiments showing the effectiveness of the proposed method. All the code will be open-sourced at https://github.com/lszhuhaichao/ultron.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.