Decentralized Control of Multi-Agent Systems Under Acyclic Spatio-Temporal Task Dependencies (2409.05106v2)
Abstract: We introduce a novel distributed sampled-data control method tailored for heterogeneous multi-agent systems under a global spatio-temporal task with acyclic dependencies. Specifically, we consider the global task as a conjunction of independent and collaborative tasks, defined over the absolute and relative states of agent pairs. Task dependencies in this form are then represented by a task graph, which we assume to be acyclic. From the given task graph, we provide an algorithmic approach to define a distributed sampled-data controller prioritizing the fulfilment of collaborative tasks as the primary objective, while fulfilling independent tasks unless they conflict with collaborative ones. Moreover, communication maintenance among collaborating agents is seamlessly enforced within the proposed control framework. A numerical simulation is provided to showcase the potential of our control framework.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.