Papers
Topics
Authors
Recent
Search
2000 character limit reached

Algebraic Representations of Entropy and Fixed-Parity Information Quantities

Published 7 Sep 2024 in cs.IT and math.IT | (2409.04845v1)

Abstract: Many information-theoretic quantities have corresponding representations in terms of sets. The prevailing signed measure space for characterising entropy, the $I$-measure of Yeung, is occasionally unable to discern between qualitatively distinct systems. In previous work, we presented a refinement of this signed measure space and demonstrated its capability to represent many quantities, which we called logarithmically decomposable quantities. In the present work we demonstrate that this framework has natural algebraic behaviour which can be expressed in terms of ideals (characterised here as upper-sets), and we show that this behaviour allows us to make various counting arguments and characterise many fixed-parity information quantity expressions. As an application, we give an algebraic proof that the only completely synergistic system of three finite variables $X$, $Y$ and $Z = f(X,Y)$ is the XOR gate.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.