Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Logarithmic Decomposition for Information (2305.07554v1)

Published 12 May 2023 in cs.IT and math.IT

Abstract: The Shannon entropy of a random variable $X$ has much behaviour analogous to a signed measure. Previous work has concretized this connection by defining a signed measure $\mu$ on an abstract information space $\tilde{X}$, which is taken to represent the information that $X$ contains. This construction is sufficient to derive many measure-theoretical counterparts to information quantities such as the mutual information $I(X; Y) = \mu(\tilde{X} \cap \tilde{Y})$, the joint entropy $H(X,Y) = \mu(\tilde{X} \cup \tilde{Y})$, and the conditional entropy $H(X|Y) = \mu(\tilde{X}\, \setminus \, \tilde{Y})$. We demonstrate that there exists a much finer decomposition with intuitive properties which we call the logarithmic decomposition (LD). We show that this signed measure space has the useful property that its logarithmic atoms are easily characterised with negative or positive entropy, while also being coherent with Yeung's $I$-measure. We present the usability of our approach by re-examining the G\'acs-K\"orner common information from this new geometric perspective and characterising it in terms of our logarithmic atoms. We then highlight that our geometric refinement can account for an entire class of information quantities, which we call logarithmically decomposable quantities.

Citations (4)

Summary

We haven't generated a summary for this paper yet.