Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
113 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Beyond One-Time Validation: A Framework for Adaptive Validation of Prognostic and Diagnostic AI-based Medical Devices (2409.04794v1)

Published 7 Sep 2024 in cs.LG and cs.CY

Abstract: Prognostic and diagnostic AI-based medical devices hold immense promise for advancing healthcare, yet their rapid development has outpaced the establishment of appropriate validation methods. Existing approaches often fall short in addressing the complexity of practically deploying these devices and ensuring their effective, continued operation in real-world settings. Building on recent discussions around the validation of AI models in medicine and drawing from validation practices in other fields, a framework to address this gap is presented. It offers a structured, robust approach to validation that helps ensure device reliability across differing clinical environments. The primary challenges to device performance upon deployment are discussed while highlighting the impact of changes related to individual healthcare institutions and operational processes. The presented framework emphasizes the importance of repeating validation and fine-tuning during deployment, aiming to mitigate these issues while being adaptable to challenges unforeseen during device development. The framework is also positioned within the current US and EU regulatory landscapes, underscoring its practical viability and relevance considering regulatory requirements. Additionally, a practical example demonstrating potential benefits of the framework is presented. Lastly, guidance on assessing model performance is offered and the importance of involving clinical stakeholders in the validation and fine-tuning process is discussed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.