Papers
Topics
Authors
Recent
2000 character limit reached

forester: A Tree-Based AutoML Tool in R

Published 7 Sep 2024 in cs.LG, cs.MS, and stat.ME | (2409.04789v1)

Abstract: The majority of automated machine learning (AutoML) solutions are developed in Python, however a large percentage of data scientists are associated with the R language. Unfortunately, there are limited R solutions available. Moreover high entry level means they are not accessible to everyone, due to required knowledge about ML. To fill this gap, we present the forester package, which offers ease of use regardless of the user's proficiency in the area of machine learning. The forester is an open-source AutoML package implemented in R designed for training high-quality tree-based models on tabular data. It fully supports binary and multiclass classification, regression, and partially survival analysis tasks. With just a few functions, the user is capable of detecting issues regarding the data quality, preparing the preprocessing pipeline, training and tuning tree-based models, evaluating the results, and creating the report for further analysis.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.